Solve for x
x = \frac{188}{9} = 20\frac{8}{9} \approx 20.888888889
Graph
Share
Copied to clipboard
150x+1880-240x=0
Subtract 240x from both sides.
-90x+1880=0
Combine 150x and -240x to get -90x.
-90x=-1880
Subtract 1880 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1880}{-90}
Divide both sides by -90.
x=\frac{188}{9}
Reduce the fraction \frac{-1880}{-90} to lowest terms by extracting and canceling out -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}