Solve for x
x=30
x=45
Graph
Share
Copied to clipboard
-20x^{2}+1500x=27000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-20x^{2}+1500x-27000=27000-27000
Subtract 27000 from both sides of the equation.
-20x^{2}+1500x-27000=0
Subtracting 27000 from itself leaves 0.
x=\frac{-1500±\sqrt{1500^{2}-4\left(-20\right)\left(-27000\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 1500 for b, and -27000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1500±\sqrt{2250000-4\left(-20\right)\left(-27000\right)}}{2\left(-20\right)}
Square 1500.
x=\frac{-1500±\sqrt{2250000+80\left(-27000\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-1500±\sqrt{2250000-2160000}}{2\left(-20\right)}
Multiply 80 times -27000.
x=\frac{-1500±\sqrt{90000}}{2\left(-20\right)}
Add 2250000 to -2160000.
x=\frac{-1500±300}{2\left(-20\right)}
Take the square root of 90000.
x=\frac{-1500±300}{-40}
Multiply 2 times -20.
x=-\frac{1200}{-40}
Now solve the equation x=\frac{-1500±300}{-40} when ± is plus. Add -1500 to 300.
x=30
Divide -1200 by -40.
x=-\frac{1800}{-40}
Now solve the equation x=\frac{-1500±300}{-40} when ± is minus. Subtract 300 from -1500.
x=45
Divide -1800 by -40.
x=30 x=45
The equation is now solved.
-20x^{2}+1500x=27000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+1500x}{-20}=\frac{27000}{-20}
Divide both sides by -20.
x^{2}+\frac{1500}{-20}x=\frac{27000}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-75x=\frac{27000}{-20}
Divide 1500 by -20.
x^{2}-75x=-1350
Divide 27000 by -20.
x^{2}-75x+\left(-\frac{75}{2}\right)^{2}=-1350+\left(-\frac{75}{2}\right)^{2}
Divide -75, the coefficient of the x term, by 2 to get -\frac{75}{2}. Then add the square of -\frac{75}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-75x+\frac{5625}{4}=-1350+\frac{5625}{4}
Square -\frac{75}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-75x+\frac{5625}{4}=\frac{225}{4}
Add -1350 to \frac{5625}{4}.
\left(x-\frac{75}{2}\right)^{2}=\frac{225}{4}
Factor x^{2}-75x+\frac{5625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{75}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
x-\frac{75}{2}=\frac{15}{2} x-\frac{75}{2}=-\frac{15}{2}
Simplify.
x=45 x=30
Add \frac{75}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}