Evaluate
\frac{1500000}{20833}\approx 72.001152018
Factor
\frac{2 ^ {5} \cdot 3 \cdot 5 ^ {6}}{83 \cdot 251} = 72\frac{24}{20833} = 72.0011520184323
Share
Copied to clipboard
\begin{array}{l}\phantom{208330)}\phantom{1}\\208330\overline{)15000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 15000000
\begin{array}{l}\phantom{208330)}0\phantom{2}\\208330\overline{)15000000}\\\end{array}
Since 1 is less than 208330, use the next digit 5 from dividend 15000000 and add 0 to the quotient
\begin{array}{l}\phantom{208330)}0\phantom{3}\\208330\overline{)15000000}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15000000
\begin{array}{l}\phantom{208330)}00\phantom{4}\\208330\overline{)15000000}\\\end{array}
Since 15 is less than 208330, use the next digit 0 from dividend 15000000 and add 0 to the quotient
\begin{array}{l}\phantom{208330)}00\phantom{5}\\208330\overline{)15000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 15000000
\begin{array}{l}\phantom{208330)}000\phantom{6}\\208330\overline{)15000000}\\\end{array}
Since 150 is less than 208330, use the next digit 0 from dividend 15000000 and add 0 to the quotient
\begin{array}{l}\phantom{208330)}000\phantom{7}\\208330\overline{)15000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 15000000
\begin{array}{l}\phantom{208330)}0000\phantom{8}\\208330\overline{)15000000}\\\end{array}
Since 1500 is less than 208330, use the next digit 0 from dividend 15000000 and add 0 to the quotient
\begin{array}{l}\phantom{208330)}0000\phantom{9}\\208330\overline{)15000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 15000000
\begin{array}{l}\phantom{208330)}00000\phantom{10}\\208330\overline{)15000000}\\\end{array}
Since 15000 is less than 208330, use the next digit 0 from dividend 15000000 and add 0 to the quotient
\begin{array}{l}\phantom{208330)}00000\phantom{11}\\208330\overline{)15000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 15000000
\begin{array}{l}\phantom{208330)}000000\phantom{12}\\208330\overline{)15000000}\\\end{array}
Since 150000 is less than 208330, use the next digit 0 from dividend 15000000 and add 0 to the quotient
\begin{array}{l}\phantom{208330)}000000\phantom{13}\\208330\overline{)15000000}\\\end{array}
Use the 7^{th} digit 0 from dividend 15000000
\begin{array}{l}\phantom{208330)}0000007\phantom{14}\\208330\overline{)15000000}\\\phantom{208330)}\underline{\phantom{}1458310\phantom{9}}\\\phantom{208330)99}41690\\\end{array}
Find closest multiple of 208330 to 1500000. We see that 7 \times 208330 = 1458310 is the nearest. Now subtract 1458310 from 1500000 to get reminder 41690. Add 7 to quotient.
\begin{array}{l}\phantom{208330)}0000007\phantom{15}\\208330\overline{)15000000}\\\phantom{208330)}\underline{\phantom{}1458310\phantom{9}}\\\phantom{208330)99}416900\\\end{array}
Use the 8^{th} digit 0 from dividend 15000000
\begin{array}{l}\phantom{208330)}00000072\phantom{16}\\208330\overline{)15000000}\\\phantom{208330)}\underline{\phantom{}1458310\phantom{9}}\\\phantom{208330)99}416900\\\phantom{208330)}\underline{\phantom{99}416660\phantom{}}\\\phantom{208330)99999}240\\\end{array}
Find closest multiple of 208330 to 416900. We see that 2 \times 208330 = 416660 is the nearest. Now subtract 416660 from 416900 to get reminder 240. Add 2 to quotient.
\text{Quotient: }72 \text{Reminder: }240
Since 240 is less than 208330, stop the division. The reminder is 240. The topmost line 00000072 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}