Solve for x
x=48\log_{2}\left(75\right)\approx 298.983297144
Solve for x (complex solution)
x=\frac{96\pi n_{1}i}{\ln(2)}+48\log_{2}\left(75\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{15000000}{200000}=2^{\frac{x}{48}}
Divide both sides by 200000.
75=2^{\frac{x}{48}}
Divide 15000000 by 200000 to get 75.
2^{\frac{x}{48}}=75
Swap sides so that all variable terms are on the left hand side.
2^{\frac{1}{48}x}=75
Use the rules of exponents and logarithms to solve the equation.
\log(2^{\frac{1}{48}x})=\log(75)
Take the logarithm of both sides of the equation.
\frac{1}{48}x\log(2)=\log(75)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\frac{1}{48}x=\frac{\log(75)}{\log(2)}
Divide both sides by \log(2).
\frac{1}{48}x=\log_{2}\left(75\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{2}\left(75\right)}{\frac{1}{48}}
Multiply both sides by 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}