Evaluate
3
Factor
3
Share
Copied to clipboard
\begin{array}{l}\phantom{500000)}\phantom{1}\\500000\overline{)1500000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1500000
\begin{array}{l}\phantom{500000)}0\phantom{2}\\500000\overline{)1500000}\\\end{array}
Since 1 is less than 500000, use the next digit 5 from dividend 1500000 and add 0 to the quotient
\begin{array}{l}\phantom{500000)}0\phantom{3}\\500000\overline{)1500000}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1500000
\begin{array}{l}\phantom{500000)}00\phantom{4}\\500000\overline{)1500000}\\\end{array}
Since 15 is less than 500000, use the next digit 0 from dividend 1500000 and add 0 to the quotient
\begin{array}{l}\phantom{500000)}00\phantom{5}\\500000\overline{)1500000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1500000
\begin{array}{l}\phantom{500000)}000\phantom{6}\\500000\overline{)1500000}\\\end{array}
Since 150 is less than 500000, use the next digit 0 from dividend 1500000 and add 0 to the quotient
\begin{array}{l}\phantom{500000)}000\phantom{7}\\500000\overline{)1500000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1500000
\begin{array}{l}\phantom{500000)}0000\phantom{8}\\500000\overline{)1500000}\\\end{array}
Since 1500 is less than 500000, use the next digit 0 from dividend 1500000 and add 0 to the quotient
\begin{array}{l}\phantom{500000)}0000\phantom{9}\\500000\overline{)1500000}\\\end{array}
Use the 5^{th} digit 0 from dividend 1500000
\begin{array}{l}\phantom{500000)}00000\phantom{10}\\500000\overline{)1500000}\\\end{array}
Since 15000 is less than 500000, use the next digit 0 from dividend 1500000 and add 0 to the quotient
\begin{array}{l}\phantom{500000)}00000\phantom{11}\\500000\overline{)1500000}\\\end{array}
Use the 6^{th} digit 0 from dividend 1500000
\begin{array}{l}\phantom{500000)}000000\phantom{12}\\500000\overline{)1500000}\\\end{array}
Since 150000 is less than 500000, use the next digit 0 from dividend 1500000 and add 0 to the quotient
\begin{array}{l}\phantom{500000)}000000\phantom{13}\\500000\overline{)1500000}\\\end{array}
Use the 7^{th} digit 0 from dividend 1500000
\begin{array}{l}\phantom{500000)}0000003\phantom{14}\\500000\overline{)1500000}\\\phantom{500000)}\underline{\phantom{}1500000\phantom{}}\\\phantom{500000)9999999}0\\\end{array}
Find closest multiple of 500000 to 1500000. We see that 3 \times 500000 = 1500000 is the nearest. Now subtract 1500000 from 1500000 to get reminder 0. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }0
Since 0 is less than 500000, stop the division. The reminder is 0. The topmost line 0000003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}