Solve for r
r=\frac{2\sqrt{26}}{5}-2\approx 0.039607805
r=-\frac{2\sqrt{26}}{5}-2\approx -4.039607805
Share
Copied to clipboard
15600=15000\left(1+\frac{r}{2}\right)^{2\times 1}
Add 15000 and 600 to get 15600.
15600=15000\left(1+\frac{r}{2}\right)^{2}
Multiply 2 and 1 to get 2.
15600=15000\left(1+2\times \frac{r}{2}+\left(\frac{r}{2}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{r}{2}\right)^{2}.
15600=15000\left(1+\frac{2r}{2}+\left(\frac{r}{2}\right)^{2}\right)
Express 2\times \frac{r}{2} as a single fraction.
15600=15000\left(1+r+\left(\frac{r}{2}\right)^{2}\right)
Cancel out 2 and 2.
15600=15000\left(1+r+\frac{r^{2}}{2^{2}}\right)
To raise \frac{r}{2} to a power, raise both numerator and denominator to the power and then divide.
15600=15000\left(\frac{\left(1+r\right)\times 2^{2}}{2^{2}}+\frac{r^{2}}{2^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+r times \frac{2^{2}}{2^{2}}.
15600=15000\times \frac{\left(1+r\right)\times 2^{2}+r^{2}}{2^{2}}
Since \frac{\left(1+r\right)\times 2^{2}}{2^{2}} and \frac{r^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
15600=15000\times \frac{4+4r+r^{2}}{2^{2}}
Do the multiplications in \left(1+r\right)\times 2^{2}+r^{2}.
15600=\frac{15000\left(4+4r+r^{2}\right)}{2^{2}}
Express 15000\times \frac{4+4r+r^{2}}{2^{2}} as a single fraction.
15600=\frac{15000\left(4+4r+r^{2}\right)}{4}
Calculate 2 to the power of 2 and get 4.
15600=3750\left(4+4r+r^{2}\right)
Divide 15000\left(4+4r+r^{2}\right) by 4 to get 3750\left(4+4r+r^{2}\right).
15600=15000+15000r+3750r^{2}
Use the distributive property to multiply 3750 by 4+4r+r^{2}.
15000+15000r+3750r^{2}=15600
Swap sides so that all variable terms are on the left hand side.
15000+15000r+3750r^{2}-15600=0
Subtract 15600 from both sides.
-600+15000r+3750r^{2}=0
Subtract 15600 from 15000 to get -600.
3750r^{2}+15000r-600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-15000±\sqrt{15000^{2}-4\times 3750\left(-600\right)}}{2\times 3750}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3750 for a, 15000 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-15000±\sqrt{225000000-4\times 3750\left(-600\right)}}{2\times 3750}
Square 15000.
r=\frac{-15000±\sqrt{225000000-15000\left(-600\right)}}{2\times 3750}
Multiply -4 times 3750.
r=\frac{-15000±\sqrt{225000000+9000000}}{2\times 3750}
Multiply -15000 times -600.
r=\frac{-15000±\sqrt{234000000}}{2\times 3750}
Add 225000000 to 9000000.
r=\frac{-15000±3000\sqrt{26}}{2\times 3750}
Take the square root of 234000000.
r=\frac{-15000±3000\sqrt{26}}{7500}
Multiply 2 times 3750.
r=\frac{3000\sqrt{26}-15000}{7500}
Now solve the equation r=\frac{-15000±3000\sqrt{26}}{7500} when ± is plus. Add -15000 to 3000\sqrt{26}.
r=\frac{2\sqrt{26}}{5}-2
Divide -15000+3000\sqrt{26} by 7500.
r=\frac{-3000\sqrt{26}-15000}{7500}
Now solve the equation r=\frac{-15000±3000\sqrt{26}}{7500} when ± is minus. Subtract 3000\sqrt{26} from -15000.
r=-\frac{2\sqrt{26}}{5}-2
Divide -15000-3000\sqrt{26} by 7500.
r=\frac{2\sqrt{26}}{5}-2 r=-\frac{2\sqrt{26}}{5}-2
The equation is now solved.
15600=15000\left(1+\frac{r}{2}\right)^{2\times 1}
Add 15000 and 600 to get 15600.
15600=15000\left(1+\frac{r}{2}\right)^{2}
Multiply 2 and 1 to get 2.
15600=15000\left(1+2\times \frac{r}{2}+\left(\frac{r}{2}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{r}{2}\right)^{2}.
15600=15000\left(1+\frac{2r}{2}+\left(\frac{r}{2}\right)^{2}\right)
Express 2\times \frac{r}{2} as a single fraction.
15600=15000\left(1+r+\left(\frac{r}{2}\right)^{2}\right)
Cancel out 2 and 2.
15600=15000\left(1+r+\frac{r^{2}}{2^{2}}\right)
To raise \frac{r}{2} to a power, raise both numerator and denominator to the power and then divide.
15600=15000\left(\frac{\left(1+r\right)\times 2^{2}}{2^{2}}+\frac{r^{2}}{2^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+r times \frac{2^{2}}{2^{2}}.
15600=15000\times \frac{\left(1+r\right)\times 2^{2}+r^{2}}{2^{2}}
Since \frac{\left(1+r\right)\times 2^{2}}{2^{2}} and \frac{r^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
15600=15000\times \frac{4+4r+r^{2}}{2^{2}}
Do the multiplications in \left(1+r\right)\times 2^{2}+r^{2}.
15600=\frac{15000\left(4+4r+r^{2}\right)}{2^{2}}
Express 15000\times \frac{4+4r+r^{2}}{2^{2}} as a single fraction.
15600=\frac{15000\left(4+4r+r^{2}\right)}{4}
Calculate 2 to the power of 2 and get 4.
15600=3750\left(4+4r+r^{2}\right)
Divide 15000\left(4+4r+r^{2}\right) by 4 to get 3750\left(4+4r+r^{2}\right).
15600=15000+15000r+3750r^{2}
Use the distributive property to multiply 3750 by 4+4r+r^{2}.
15000+15000r+3750r^{2}=15600
Swap sides so that all variable terms are on the left hand side.
15000r+3750r^{2}=15600-15000
Subtract 15000 from both sides.
15000r+3750r^{2}=600
Subtract 15000 from 15600 to get 600.
3750r^{2}+15000r=600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3750r^{2}+15000r}{3750}=\frac{600}{3750}
Divide both sides by 3750.
r^{2}+\frac{15000}{3750}r=\frac{600}{3750}
Dividing by 3750 undoes the multiplication by 3750.
r^{2}+4r=\frac{600}{3750}
Divide 15000 by 3750.
r^{2}+4r=\frac{4}{25}
Reduce the fraction \frac{600}{3750} to lowest terms by extracting and canceling out 150.
r^{2}+4r+2^{2}=\frac{4}{25}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+4r+4=\frac{4}{25}+4
Square 2.
r^{2}+4r+4=\frac{104}{25}
Add \frac{4}{25} to 4.
\left(r+2\right)^{2}=\frac{104}{25}
Factor r^{2}+4r+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+2\right)^{2}}=\sqrt{\frac{104}{25}}
Take the square root of both sides of the equation.
r+2=\frac{2\sqrt{26}}{5} r+2=-\frac{2\sqrt{26}}{5}
Simplify.
r=\frac{2\sqrt{26}}{5}-2 r=-\frac{2\sqrt{26}}{5}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}