Solve for x
x=\frac{\sqrt{69}}{10}-\frac{3}{2}\approx -0.669337614
x=-\frac{\sqrt{69}}{10}-\frac{3}{2}\approx -2.330662386
Graph
Share
Copied to clipboard
1500+1500\left(1+x\right)+1500\left(1+x\right)^{2}=2160
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
1500+1500+1500x+1500\left(1+x\right)^{2}=2160
Use the distributive property to multiply 1500 by 1+x.
3000+1500x+1500\left(1+x\right)^{2}=2160
Add 1500 and 1500 to get 3000.
3000+1500x+1500\left(1+2x+x^{2}\right)=2160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
3000+1500x+1500+3000x+1500x^{2}=2160
Use the distributive property to multiply 1500 by 1+2x+x^{2}.
4500+1500x+3000x+1500x^{2}=2160
Add 3000 and 1500 to get 4500.
4500+4500x+1500x^{2}=2160
Combine 1500x and 3000x to get 4500x.
4500+4500x+1500x^{2}-2160=0
Subtract 2160 from both sides.
2340+4500x+1500x^{2}=0
Subtract 2160 from 4500 to get 2340.
1500x^{2}+4500x+2340=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4500±\sqrt{4500^{2}-4\times 1500\times 2340}}{2\times 1500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1500 for a, 4500 for b, and 2340 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4500±\sqrt{20250000-4\times 1500\times 2340}}{2\times 1500}
Square 4500.
x=\frac{-4500±\sqrt{20250000-6000\times 2340}}{2\times 1500}
Multiply -4 times 1500.
x=\frac{-4500±\sqrt{20250000-14040000}}{2\times 1500}
Multiply -6000 times 2340.
x=\frac{-4500±\sqrt{6210000}}{2\times 1500}
Add 20250000 to -14040000.
x=\frac{-4500±300\sqrt{69}}{2\times 1500}
Take the square root of 6210000.
x=\frac{-4500±300\sqrt{69}}{3000}
Multiply 2 times 1500.
x=\frac{300\sqrt{69}-4500}{3000}
Now solve the equation x=\frac{-4500±300\sqrt{69}}{3000} when ± is plus. Add -4500 to 300\sqrt{69}.
x=\frac{\sqrt{69}}{10}-\frac{3}{2}
Divide -4500+300\sqrt{69} by 3000.
x=\frac{-300\sqrt{69}-4500}{3000}
Now solve the equation x=\frac{-4500±300\sqrt{69}}{3000} when ± is minus. Subtract 300\sqrt{69} from -4500.
x=-\frac{\sqrt{69}}{10}-\frac{3}{2}
Divide -4500-300\sqrt{69} by 3000.
x=\frac{\sqrt{69}}{10}-\frac{3}{2} x=-\frac{\sqrt{69}}{10}-\frac{3}{2}
The equation is now solved.
1500+1500\left(1+x\right)+1500\left(1+x\right)^{2}=2160
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
1500+1500+1500x+1500\left(1+x\right)^{2}=2160
Use the distributive property to multiply 1500 by 1+x.
3000+1500x+1500\left(1+x\right)^{2}=2160
Add 1500 and 1500 to get 3000.
3000+1500x+1500\left(1+2x+x^{2}\right)=2160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
3000+1500x+1500+3000x+1500x^{2}=2160
Use the distributive property to multiply 1500 by 1+2x+x^{2}.
4500+1500x+3000x+1500x^{2}=2160
Add 3000 and 1500 to get 4500.
4500+4500x+1500x^{2}=2160
Combine 1500x and 3000x to get 4500x.
4500x+1500x^{2}=2160-4500
Subtract 4500 from both sides.
4500x+1500x^{2}=-2340
Subtract 4500 from 2160 to get -2340.
1500x^{2}+4500x=-2340
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1500x^{2}+4500x}{1500}=-\frac{2340}{1500}
Divide both sides by 1500.
x^{2}+\frac{4500}{1500}x=-\frac{2340}{1500}
Dividing by 1500 undoes the multiplication by 1500.
x^{2}+3x=-\frac{2340}{1500}
Divide 4500 by 1500.
x^{2}+3x=-\frac{39}{25}
Reduce the fraction \frac{-2340}{1500} to lowest terms by extracting and canceling out 60.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{39}{25}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{39}{25}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{69}{100}
Add -\frac{39}{25} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{69}{100}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{69}{100}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{69}}{10} x+\frac{3}{2}=-\frac{\sqrt{69}}{10}
Simplify.
x=\frac{\sqrt{69}}{10}-\frac{3}{2} x=-\frac{\sqrt{69}}{10}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}