Solve for k
\left\{\begin{matrix}k=\frac{1500}{m_{500}}\text{, }&m_{500}\neq 0\\k\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&k=\frac{1500}{m_{500}}\text{ and }m_{500}\neq 0\end{matrix}\right.
Share
Copied to clipboard
1km_{500}m=1500m
Swap sides so that all variable terms are on the left hand side.
kmm_{500}=1500m
Reorder the terms.
mm_{500}k=1500m
The equation is in standard form.
\frac{mm_{500}k}{mm_{500}}=\frac{1500m}{mm_{500}}
Divide both sides by m_{500}m.
k=\frac{1500m}{mm_{500}}
Dividing by m_{500}m undoes the multiplication by m_{500}m.
k=\frac{1500}{m_{500}}
Divide 1500m by m_{500}m.
1500m-km_{500}m=0
Subtract 1km_{500}m from both sides.
\left(1500-km_{500}\right)m=0
Combine all terms containing m.
m=0
Divide 0 by 1500-km_{500}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}