Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{1125)}\phantom{1}\\1125\overline{)1500}\\\end{array}
Use the 1^{st} digit 1 from dividend 1500
\begin{array}{l}\phantom{1125)}0\phantom{2}\\1125\overline{)1500}\\\end{array}
Since 1 is less than 1125, use the next digit 5 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{1125)}0\phantom{3}\\1125\overline{)1500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1500
\begin{array}{l}\phantom{1125)}00\phantom{4}\\1125\overline{)1500}\\\end{array}
Since 15 is less than 1125, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{1125)}00\phantom{5}\\1125\overline{)1500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1500
\begin{array}{l}\phantom{1125)}000\phantom{6}\\1125\overline{)1500}\\\end{array}
Since 150 is less than 1125, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{1125)}000\phantom{7}\\1125\overline{)1500}\\\end{array}
Use the 4^{th} digit 0 from dividend 1500
\begin{array}{l}\phantom{1125)}0001\phantom{8}\\1125\overline{)1500}\\\phantom{1125)}\underline{\phantom{}1125\phantom{}}\\\phantom{1125)9}375\\\end{array}
Find closest multiple of 1125 to 1500. We see that 1 \times 1125 = 1125 is the nearest. Now subtract 1125 from 1500 to get reminder 375. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }375
Since 375 is less than 1125, stop the division. The reminder is 375. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}