Solve for x
x=-\frac{2\sqrt{3}}{3}-1\approx -2.154700538
x=\frac{2\sqrt{3}}{3}-1\approx 0.154700538
Graph
Share
Copied to clipboard
1500\left(x+1\right)^{2}=2000
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}.
1500\left(x^{2}+2x+1\right)=2000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
1500x^{2}+3000x+1500=2000
Use the distributive property to multiply 1500 by x^{2}+2x+1.
1500x^{2}+3000x+1500-2000=0
Subtract 2000 from both sides.
1500x^{2}+3000x-500=0
Subtract 2000 from 1500 to get -500.
x=\frac{-3000±\sqrt{3000^{2}-4\times 1500\left(-500\right)}}{2\times 1500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1500 for a, 3000 for b, and -500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3000±\sqrt{9000000-4\times 1500\left(-500\right)}}{2\times 1500}
Square 3000.
x=\frac{-3000±\sqrt{9000000-6000\left(-500\right)}}{2\times 1500}
Multiply -4 times 1500.
x=\frac{-3000±\sqrt{9000000+3000000}}{2\times 1500}
Multiply -6000 times -500.
x=\frac{-3000±\sqrt{12000000}}{2\times 1500}
Add 9000000 to 3000000.
x=\frac{-3000±2000\sqrt{3}}{2\times 1500}
Take the square root of 12000000.
x=\frac{-3000±2000\sqrt{3}}{3000}
Multiply 2 times 1500.
x=\frac{2000\sqrt{3}-3000}{3000}
Now solve the equation x=\frac{-3000±2000\sqrt{3}}{3000} when ± is plus. Add -3000 to 2000\sqrt{3}.
x=\frac{2\sqrt{3}}{3}-1
Divide -3000+2000\sqrt{3} by 3000.
x=\frac{-2000\sqrt{3}-3000}{3000}
Now solve the equation x=\frac{-3000±2000\sqrt{3}}{3000} when ± is minus. Subtract 2000\sqrt{3} from -3000.
x=-\frac{2\sqrt{3}}{3}-1
Divide -3000-2000\sqrt{3} by 3000.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
The equation is now solved.
1500\left(x+1\right)^{2}=2000
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}.
1500\left(x^{2}+2x+1\right)=2000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
1500x^{2}+3000x+1500=2000
Use the distributive property to multiply 1500 by x^{2}+2x+1.
1500x^{2}+3000x=2000-1500
Subtract 1500 from both sides.
1500x^{2}+3000x=500
Subtract 1500 from 2000 to get 500.
\frac{1500x^{2}+3000x}{1500}=\frac{500}{1500}
Divide both sides by 1500.
x^{2}+\frac{3000}{1500}x=\frac{500}{1500}
Dividing by 1500 undoes the multiplication by 1500.
x^{2}+2x=\frac{500}{1500}
Divide 3000 by 1500.
x^{2}+2x=\frac{1}{3}
Reduce the fraction \frac{500}{1500} to lowest terms by extracting and canceling out 500.
x^{2}+2x+1^{2}=\frac{1}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{1}{3}+1
Square 1.
x^{2}+2x+1=\frac{4}{3}
Add \frac{1}{3} to 1.
\left(x+1\right)^{2}=\frac{4}{3}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{4}{3}}
Take the square root of both sides of the equation.
x+1=\frac{2\sqrt{3}}{3} x+1=-\frac{2\sqrt{3}}{3}
Simplify.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}