Solve for p
p>\frac{175}{3}
Share
Copied to clipboard
1500+25p-625<40p
Use the distributive property to multiply 25 by p-25.
875+25p<40p
Subtract 625 from 1500 to get 875.
875+25p-40p<0
Subtract 40p from both sides.
875-15p<0
Combine 25p and -40p to get -15p.
-15p<-875
Subtract 875 from both sides. Anything subtracted from zero gives its negation.
p>\frac{-875}{-15}
Divide both sides by -15. Since -15 is negative, the inequality direction is changed.
p>\frac{175}{3}
Reduce the fraction \frac{-875}{-15} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}