Solve for a
a\geq 20
Share
Copied to clipboard
6000a+1\left(1600-60a\right)\times 120\leq 168000
Multiply both sides of the equation by 40. Since 40 is positive, the inequality direction remains the same.
6000a+120\left(1600-60a\right)\leq 168000
Multiply 1 and 120 to get 120.
6000a+192000-7200a\leq 168000
Use the distributive property to multiply 120 by 1600-60a.
-1200a+192000\leq 168000
Combine 6000a and -7200a to get -1200a.
-1200a\leq 168000-192000
Subtract 192000 from both sides.
-1200a\leq -24000
Subtract 192000 from 168000 to get -24000.
a\geq \frac{-24000}{-1200}
Divide both sides by -1200. Since -1200 is negative, the inequality direction is changed.
a\geq 20
Divide -24000 by -1200 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}