Solve for k
k = \frac{549}{100} = 5\frac{49}{100} = 5.49
Share
Copied to clipboard
9750-1500k-1500=15
Use the distributive property to multiply 150 by 65-10k.
8250-1500k=15
Subtract 1500 from 9750 to get 8250.
-1500k=15-8250
Subtract 8250 from both sides.
-1500k=-8235
Subtract 8250 from 15 to get -8235.
k=\frac{-8235}{-1500}
Divide both sides by -1500.
k=\frac{549}{100}
Reduce the fraction \frac{-8235}{-1500} to lowest terms by extracting and canceling out -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}