Solve for x
x=\frac{\sqrt{69}}{10}-\frac{1}{2}\approx 0.330662386
x=-\frac{\sqrt{69}}{10}-\frac{1}{2}\approx -1.330662386
Graph
Share
Copied to clipboard
150x^{2}+150x-66=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-150±\sqrt{150^{2}-4\times 150\left(-66\right)}}{2\times 150}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 150 for a, 150 for b, and -66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\times 150\left(-66\right)}}{2\times 150}
Square 150.
x=\frac{-150±\sqrt{22500-600\left(-66\right)}}{2\times 150}
Multiply -4 times 150.
x=\frac{-150±\sqrt{22500+39600}}{2\times 150}
Multiply -600 times -66.
x=\frac{-150±\sqrt{62100}}{2\times 150}
Add 22500 to 39600.
x=\frac{-150±30\sqrt{69}}{2\times 150}
Take the square root of 62100.
x=\frac{-150±30\sqrt{69}}{300}
Multiply 2 times 150.
x=\frac{30\sqrt{69}-150}{300}
Now solve the equation x=\frac{-150±30\sqrt{69}}{300} when ± is plus. Add -150 to 30\sqrt{69}.
x=\frac{\sqrt{69}}{10}-\frac{1}{2}
Divide -150+30\sqrt{69} by 300.
x=\frac{-30\sqrt{69}-150}{300}
Now solve the equation x=\frac{-150±30\sqrt{69}}{300} when ± is minus. Subtract 30\sqrt{69} from -150.
x=-\frac{\sqrt{69}}{10}-\frac{1}{2}
Divide -150-30\sqrt{69} by 300.
x=\frac{\sqrt{69}}{10}-\frac{1}{2} x=-\frac{\sqrt{69}}{10}-\frac{1}{2}
The equation is now solved.
150x^{2}+150x-66=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
150x^{2}+150x-66-\left(-66\right)=-\left(-66\right)
Add 66 to both sides of the equation.
150x^{2}+150x=-\left(-66\right)
Subtracting -66 from itself leaves 0.
150x^{2}+150x=66
Subtract -66 from 0.
\frac{150x^{2}+150x}{150}=\frac{66}{150}
Divide both sides by 150.
x^{2}+\frac{150}{150}x=\frac{66}{150}
Dividing by 150 undoes the multiplication by 150.
x^{2}+x=\frac{66}{150}
Divide 150 by 150.
x^{2}+x=\frac{11}{25}
Reduce the fraction \frac{66}{150} to lowest terms by extracting and canceling out 6.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{11}{25}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{11}{25}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{69}{100}
Add \frac{11}{25} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{69}{100}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{69}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{69}}{10} x+\frac{1}{2}=-\frac{\sqrt{69}}{10}
Simplify.
x=\frac{\sqrt{69}}{10}-\frac{1}{2} x=-\frac{\sqrt{69}}{10}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}