Evaluate
0
Factor
0
Share
Copied to clipboard
15\left(-\frac{61}{5}\right)-7\left(-26\right)+1
Reduce the fraction \frac{183}{15} to lowest terms by extracting and canceling out 3.
\frac{15\left(-61\right)}{5}-7\left(-26\right)+1
Express 15\left(-\frac{61}{5}\right) as a single fraction.
\frac{-915}{5}-7\left(-26\right)+1
Multiply 15 and -61 to get -915.
-183-7\left(-26\right)+1
Divide -915 by 5 to get -183.
-183-\left(-182\right)+1
Multiply 7 and -26 to get -182.
-183+182+1
The opposite of -182 is 182.
-1+1
Add -183 and 182 to get -1.
0
Add -1 and 1 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}