Solve for x
x=\frac{750000y}{17}
y\neq 0
Solve for y
y=\frac{17x}{750000}
x\neq 0
Graph
Share
Copied to clipboard
15y=340\times 10^{-6}x
Multiply both sides of the equation by y.
15y=340\times \frac{1}{1000000}x
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
15y=\frac{17}{50000}x
Multiply 340 and \frac{1}{1000000} to get \frac{17}{50000}.
\frac{17}{50000}x=15y
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{17}{50000}x}{\frac{17}{50000}}=\frac{15y}{\frac{17}{50000}}
Divide both sides of the equation by \frac{17}{50000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{15y}{\frac{17}{50000}}
Dividing by \frac{17}{50000} undoes the multiplication by \frac{17}{50000}.
x=\frac{750000y}{17}
Divide 15y by \frac{17}{50000} by multiplying 15y by the reciprocal of \frac{17}{50000}.
15y=340\times 10^{-6}x
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
15y=340\times \frac{1}{1000000}x
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
15y=\frac{17}{50000}x
Multiply 340 and \frac{1}{1000000} to get \frac{17}{50000}.
15y=\frac{17x}{50000}
The equation is in standard form.
\frac{15y}{15}=\frac{17x}{15\times 50000}
Divide both sides by 15.
y=\frac{17x}{15\times 50000}
Dividing by 15 undoes the multiplication by 15.
y=\frac{17x}{750000}
Divide \frac{17x}{50000} by 15.
y=\frac{17x}{750000}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}