Solve for k
\left\{\begin{matrix}\\k=0\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&t=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}\\t=0\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&k=0\end{matrix}\right.
Share
Copied to clipboard
\frac{15000}{15000}=e^{\left(-k\right)t}
Divide both sides by 15000.
1=e^{\left(-k\right)t}
Divide 15000 by 15000 to get 1.
e^{\left(-k\right)t}=1
Swap sides so that all variable terms are on the left hand side.
e^{-kt}=1
Reorder the terms.
e^{\left(-t\right)k}=1
Use the rules of exponents and logarithms to solve the equation.
\log(e^{\left(-t\right)k})=\log(1)
Take the logarithm of both sides of the equation.
\left(-t\right)k\log(e)=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-t\right)k=\frac{\log(1)}{\log(e)}
Divide both sides by \log(e).
\left(-t\right)k=\log_{e}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
k=\frac{0}{-t}
Divide both sides by -t.
\frac{15000}{15000}=e^{\left(-k\right)t}
Divide both sides by 15000.
1=e^{\left(-k\right)t}
Divide 15000 by 15000 to get 1.
e^{\left(-k\right)t}=1
Swap sides so that all variable terms are on the left hand side.
\log(e^{\left(-k\right)t})=\log(1)
Take the logarithm of both sides of the equation.
\left(-k\right)t\log(e)=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-k\right)t=\frac{\log(1)}{\log(e)}
Divide both sides by \log(e).
\left(-k\right)t=\log_{e}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{0}{-k}
Divide both sides by -k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}