Solve for x
x\geq 9
Graph
Share
Copied to clipboard
15+x\geq \frac{2}{3}\times 27+\frac{2}{3}x
Use the distributive property to multiply \frac{2}{3} by 27+x.
15+x\geq \frac{2\times 27}{3}+\frac{2}{3}x
Express \frac{2}{3}\times 27 as a single fraction.
15+x\geq \frac{54}{3}+\frac{2}{3}x
Multiply 2 and 27 to get 54.
15+x\geq 18+\frac{2}{3}x
Divide 54 by 3 to get 18.
15+x-\frac{2}{3}x\geq 18
Subtract \frac{2}{3}x from both sides.
15+\frac{1}{3}x\geq 18
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{1}{3}x\geq 18-15
Subtract 15 from both sides.
\frac{1}{3}x\geq 3
Subtract 15 from 18 to get 3.
x\geq 3\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}. Since \frac{1}{3} is positive, the inequality direction remains the same.
x\geq 9
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}