Solve for y
y=\frac{2}{5}=0.4
y = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
15y^{2}-41y=-14
Subtract 41y from both sides.
15y^{2}-41y+14=0
Add 14 to both sides.
a+b=-41 ab=15\times 14=210
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15y^{2}+ay+by+14. To find a and b, set up a system to be solved.
-1,-210 -2,-105 -3,-70 -5,-42 -6,-35 -7,-30 -10,-21 -14,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 210.
-1-210=-211 -2-105=-107 -3-70=-73 -5-42=-47 -6-35=-41 -7-30=-37 -10-21=-31 -14-15=-29
Calculate the sum for each pair.
a=-35 b=-6
The solution is the pair that gives sum -41.
\left(15y^{2}-35y\right)+\left(-6y+14\right)
Rewrite 15y^{2}-41y+14 as \left(15y^{2}-35y\right)+\left(-6y+14\right).
5y\left(3y-7\right)-2\left(3y-7\right)
Factor out 5y in the first and -2 in the second group.
\left(3y-7\right)\left(5y-2\right)
Factor out common term 3y-7 by using distributive property.
y=\frac{7}{3} y=\frac{2}{5}
To find equation solutions, solve 3y-7=0 and 5y-2=0.
15y^{2}-41y=-14
Subtract 41y from both sides.
15y^{2}-41y+14=0
Add 14 to both sides.
y=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 15\times 14}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -41 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-41\right)±\sqrt{1681-4\times 15\times 14}}{2\times 15}
Square -41.
y=\frac{-\left(-41\right)±\sqrt{1681-60\times 14}}{2\times 15}
Multiply -4 times 15.
y=\frac{-\left(-41\right)±\sqrt{1681-840}}{2\times 15}
Multiply -60 times 14.
y=\frac{-\left(-41\right)±\sqrt{841}}{2\times 15}
Add 1681 to -840.
y=\frac{-\left(-41\right)±29}{2\times 15}
Take the square root of 841.
y=\frac{41±29}{2\times 15}
The opposite of -41 is 41.
y=\frac{41±29}{30}
Multiply 2 times 15.
y=\frac{70}{30}
Now solve the equation y=\frac{41±29}{30} when ± is plus. Add 41 to 29.
y=\frac{7}{3}
Reduce the fraction \frac{70}{30} to lowest terms by extracting and canceling out 10.
y=\frac{12}{30}
Now solve the equation y=\frac{41±29}{30} when ± is minus. Subtract 29 from 41.
y=\frac{2}{5}
Reduce the fraction \frac{12}{30} to lowest terms by extracting and canceling out 6.
y=\frac{7}{3} y=\frac{2}{5}
The equation is now solved.
15y^{2}-41y=-14
Subtract 41y from both sides.
\frac{15y^{2}-41y}{15}=-\frac{14}{15}
Divide both sides by 15.
y^{2}-\frac{41}{15}y=-\frac{14}{15}
Dividing by 15 undoes the multiplication by 15.
y^{2}-\frac{41}{15}y+\left(-\frac{41}{30}\right)^{2}=-\frac{14}{15}+\left(-\frac{41}{30}\right)^{2}
Divide -\frac{41}{15}, the coefficient of the x term, by 2 to get -\frac{41}{30}. Then add the square of -\frac{41}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{41}{15}y+\frac{1681}{900}=-\frac{14}{15}+\frac{1681}{900}
Square -\frac{41}{30} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{41}{15}y+\frac{1681}{900}=\frac{841}{900}
Add -\frac{14}{15} to \frac{1681}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{41}{30}\right)^{2}=\frac{841}{900}
Factor y^{2}-\frac{41}{15}y+\frac{1681}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{41}{30}\right)^{2}}=\sqrt{\frac{841}{900}}
Take the square root of both sides of the equation.
y-\frac{41}{30}=\frac{29}{30} y-\frac{41}{30}=-\frac{29}{30}
Simplify.
y=\frac{7}{3} y=\frac{2}{5}
Add \frac{41}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}