Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(5y^{2}+6y\right)
Factor out 3.
y\left(5y+6\right)
Consider 5y^{2}+6y. Factor out y.
3y\left(5y+6\right)
Rewrite the complete factored expression.
15y^{2}+18y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-18±\sqrt{18^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-18±18}{2\times 15}
Take the square root of 18^{2}.
y=\frac{-18±18}{30}
Multiply 2 times 15.
y=\frac{0}{30}
Now solve the equation y=\frac{-18±18}{30} when ± is plus. Add -18 to 18.
y=0
Divide 0 by 30.
y=-\frac{36}{30}
Now solve the equation y=\frac{-18±18}{30} when ± is minus. Subtract 18 from -18.
y=-\frac{6}{5}
Reduce the fraction \frac{-36}{30} to lowest terms by extracting and canceling out 6.
15y^{2}+18y=15y\left(y-\left(-\frac{6}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{6}{5} for x_{2}.
15y^{2}+18y=15y\left(y+\frac{6}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15y^{2}+18y=15y\times \frac{5y+6}{5}
Add \frac{6}{5} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15y^{2}+18y=3y\left(5y+6\right)
Cancel out 5, the greatest common factor in 15 and 5.