Solve for x
x=\frac{8y}{15}+\frac{17}{5}
Solve for y
y=\frac{15x-51}{8}
Graph
Share
Copied to clipboard
15x-51=8y
Add 8y to both sides. Anything plus zero gives itself.
15x=8y+51
Add 51 to both sides.
\frac{15x}{15}=\frac{8y+51}{15}
Divide both sides by 15.
x=\frac{8y+51}{15}
Dividing by 15 undoes the multiplication by 15.
x=\frac{8y}{15}+\frac{17}{5}
Divide 8y+51 by 15.
-8y-51=-15x
Subtract 15x from both sides. Anything subtracted from zero gives its negation.
-8y=-15x+51
Add 51 to both sides.
-8y=51-15x
The equation is in standard form.
\frac{-8y}{-8}=\frac{51-15x}{-8}
Divide both sides by -8.
y=\frac{51-15x}{-8}
Dividing by -8 undoes the multiplication by -8.
y=\frac{15x-51}{8}
Divide -15x+51 by -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}