Solve for x
x=2
x=-1
Graph
Share
Copied to clipboard
15x^{2}-15x=30
Use the distributive property to multiply 15x by x-1.
15x^{2}-15x-30=0
Subtract 30 from both sides.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 15\left(-30\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -15 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 15\left(-30\right)}}{2\times 15}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-60\left(-30\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-15\right)±\sqrt{225+1800}}{2\times 15}
Multiply -60 times -30.
x=\frac{-\left(-15\right)±\sqrt{2025}}{2\times 15}
Add 225 to 1800.
x=\frac{-\left(-15\right)±45}{2\times 15}
Take the square root of 2025.
x=\frac{15±45}{2\times 15}
The opposite of -15 is 15.
x=\frac{15±45}{30}
Multiply 2 times 15.
x=\frac{60}{30}
Now solve the equation x=\frac{15±45}{30} when ± is plus. Add 15 to 45.
x=2
Divide 60 by 30.
x=-\frac{30}{30}
Now solve the equation x=\frac{15±45}{30} when ± is minus. Subtract 45 from 15.
x=-1
Divide -30 by 30.
x=2 x=-1
The equation is now solved.
15x^{2}-15x=30
Use the distributive property to multiply 15x by x-1.
\frac{15x^{2}-15x}{15}=\frac{30}{15}
Divide both sides by 15.
x^{2}+\left(-\frac{15}{15}\right)x=\frac{30}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-x=\frac{30}{15}
Divide -15 by 15.
x^{2}-x=2
Divide 30 by 15.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Add 2 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Simplify.
x=2 x=-1
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}