Solve for x
x = \frac{5 \sqrt{521} + 115}{2} \approx 114.563561053
x=\frac{115-5\sqrt{521}}{2}\approx 0.436438947
Graph
Share
Copied to clipboard
1725x-15x^{2}=750
Use the distributive property to multiply 15x by 115-x.
1725x-15x^{2}-750=0
Subtract 750 from both sides.
-15x^{2}+1725x-750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1725±\sqrt{1725^{2}-4\left(-15\right)\left(-750\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 1725 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1725±\sqrt{2975625-4\left(-15\right)\left(-750\right)}}{2\left(-15\right)}
Square 1725.
x=\frac{-1725±\sqrt{2975625+60\left(-750\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-1725±\sqrt{2975625-45000}}{2\left(-15\right)}
Multiply 60 times -750.
x=\frac{-1725±\sqrt{2930625}}{2\left(-15\right)}
Add 2975625 to -45000.
x=\frac{-1725±75\sqrt{521}}{2\left(-15\right)}
Take the square root of 2930625.
x=\frac{-1725±75\sqrt{521}}{-30}
Multiply 2 times -15.
x=\frac{75\sqrt{521}-1725}{-30}
Now solve the equation x=\frac{-1725±75\sqrt{521}}{-30} when ± is plus. Add -1725 to 75\sqrt{521}.
x=\frac{115-5\sqrt{521}}{2}
Divide -1725+75\sqrt{521} by -30.
x=\frac{-75\sqrt{521}-1725}{-30}
Now solve the equation x=\frac{-1725±75\sqrt{521}}{-30} when ± is minus. Subtract 75\sqrt{521} from -1725.
x=\frac{5\sqrt{521}+115}{2}
Divide -1725-75\sqrt{521} by -30.
x=\frac{115-5\sqrt{521}}{2} x=\frac{5\sqrt{521}+115}{2}
The equation is now solved.
1725x-15x^{2}=750
Use the distributive property to multiply 15x by 115-x.
-15x^{2}+1725x=750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}+1725x}{-15}=\frac{750}{-15}
Divide both sides by -15.
x^{2}+\frac{1725}{-15}x=\frac{750}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-115x=\frac{750}{-15}
Divide 1725 by -15.
x^{2}-115x=-50
Divide 750 by -15.
x^{2}-115x+\left(-\frac{115}{2}\right)^{2}=-50+\left(-\frac{115}{2}\right)^{2}
Divide -115, the coefficient of the x term, by 2 to get -\frac{115}{2}. Then add the square of -\frac{115}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-115x+\frac{13225}{4}=-50+\frac{13225}{4}
Square -\frac{115}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-115x+\frac{13225}{4}=\frac{13025}{4}
Add -50 to \frac{13225}{4}.
\left(x-\frac{115}{2}\right)^{2}=\frac{13025}{4}
Factor x^{2}-115x+\frac{13225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{115}{2}\right)^{2}}=\sqrt{\frac{13025}{4}}
Take the square root of both sides of the equation.
x-\frac{115}{2}=\frac{5\sqrt{521}}{2} x-\frac{115}{2}=-\frac{5\sqrt{521}}{2}
Simplify.
x=\frac{5\sqrt{521}+115}{2} x=\frac{115-5\sqrt{521}}{2}
Add \frac{115}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}