Solve for x (complex solution)
x=\frac{5\sqrt{15}i}{6}+\frac{25}{2}\approx 12.5+3.227486122i
x=-\frac{5\sqrt{15}i}{6}+\frac{25}{2}\approx 12.5-3.227486122i
Graph
Share
Copied to clipboard
375x-15x^{2}=2500
Use the distributive property to multiply 15x by 25-x.
375x-15x^{2}-2500=0
Subtract 2500 from both sides.
-15x^{2}+375x-2500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-375±\sqrt{375^{2}-4\left(-15\right)\left(-2500\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 375 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-375±\sqrt{140625-4\left(-15\right)\left(-2500\right)}}{2\left(-15\right)}
Square 375.
x=\frac{-375±\sqrt{140625+60\left(-2500\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-375±\sqrt{140625-150000}}{2\left(-15\right)}
Multiply 60 times -2500.
x=\frac{-375±\sqrt{-9375}}{2\left(-15\right)}
Add 140625 to -150000.
x=\frac{-375±25\sqrt{15}i}{2\left(-15\right)}
Take the square root of -9375.
x=\frac{-375±25\sqrt{15}i}{-30}
Multiply 2 times -15.
x=\frac{-375+25\sqrt{15}i}{-30}
Now solve the equation x=\frac{-375±25\sqrt{15}i}{-30} when ± is plus. Add -375 to 25i\sqrt{15}.
x=-\frac{5\sqrt{15}i}{6}+\frac{25}{2}
Divide -375+25i\sqrt{15} by -30.
x=\frac{-25\sqrt{15}i-375}{-30}
Now solve the equation x=\frac{-375±25\sqrt{15}i}{-30} when ± is minus. Subtract 25i\sqrt{15} from -375.
x=\frac{5\sqrt{15}i}{6}+\frac{25}{2}
Divide -375-25i\sqrt{15} by -30.
x=-\frac{5\sqrt{15}i}{6}+\frac{25}{2} x=\frac{5\sqrt{15}i}{6}+\frac{25}{2}
The equation is now solved.
375x-15x^{2}=2500
Use the distributive property to multiply 15x by 25-x.
-15x^{2}+375x=2500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}+375x}{-15}=\frac{2500}{-15}
Divide both sides by -15.
x^{2}+\frac{375}{-15}x=\frac{2500}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-25x=\frac{2500}{-15}
Divide 375 by -15.
x^{2}-25x=-\frac{500}{3}
Reduce the fraction \frac{2500}{-15} to lowest terms by extracting and canceling out 5.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-\frac{500}{3}+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=-\frac{500}{3}+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=-\frac{125}{12}
Add -\frac{500}{3} to \frac{625}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{2}\right)^{2}=-\frac{125}{12}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{-\frac{125}{12}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{5\sqrt{15}i}{6} x-\frac{25}{2}=-\frac{5\sqrt{15}i}{6}
Simplify.
x=\frac{5\sqrt{15}i}{6}+\frac{25}{2} x=-\frac{5\sqrt{15}i}{6}+\frac{25}{2}
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}