Factor
3\left(x-3\right)\left(5x-6\right)
Evaluate
3\left(x-3\right)\left(5x-6\right)
Graph
Share
Copied to clipboard
3\left(5x^{2}-21x+18\right)
Factor out 3.
a+b=-21 ab=5\times 18=90
Consider 5x^{2}-21x+18. Factor the expression by grouping. First, the expression needs to be rewritten as 5x^{2}+ax+bx+18. To find a and b, set up a system to be solved.
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 90.
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
Calculate the sum for each pair.
a=-15 b=-6
The solution is the pair that gives sum -21.
\left(5x^{2}-15x\right)+\left(-6x+18\right)
Rewrite 5x^{2}-21x+18 as \left(5x^{2}-15x\right)+\left(-6x+18\right).
5x\left(x-3\right)-6\left(x-3\right)
Factor out 5x in the first and -6 in the second group.
\left(x-3\right)\left(5x-6\right)
Factor out common term x-3 by using distributive property.
3\left(x-3\right)\left(5x-6\right)
Rewrite the complete factored expression.
15x^{2}-63x+54=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 15\times 54}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-63\right)±\sqrt{3969-4\times 15\times 54}}{2\times 15}
Square -63.
x=\frac{-\left(-63\right)±\sqrt{3969-60\times 54}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-63\right)±\sqrt{3969-3240}}{2\times 15}
Multiply -60 times 54.
x=\frac{-\left(-63\right)±\sqrt{729}}{2\times 15}
Add 3969 to -3240.
x=\frac{-\left(-63\right)±27}{2\times 15}
Take the square root of 729.
x=\frac{63±27}{2\times 15}
The opposite of -63 is 63.
x=\frac{63±27}{30}
Multiply 2 times 15.
x=\frac{90}{30}
Now solve the equation x=\frac{63±27}{30} when ± is plus. Add 63 to 27.
x=3
Divide 90 by 30.
x=\frac{36}{30}
Now solve the equation x=\frac{63±27}{30} when ± is minus. Subtract 27 from 63.
x=\frac{6}{5}
Reduce the fraction \frac{36}{30} to lowest terms by extracting and canceling out 6.
15x^{2}-63x+54=15\left(x-3\right)\left(x-\frac{6}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and \frac{6}{5} for x_{2}.
15x^{2}-63x+54=15\left(x-3\right)\times \frac{5x-6}{5}
Subtract \frac{6}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-63x+54=3\left(x-3\right)\left(5x-6\right)
Cancel out 5, the greatest common factor in 15 and 5.
x ^ 2 -\frac{21}{5}x +\frac{18}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = \frac{21}{5} rs = \frac{18}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{21}{10} - u s = \frac{21}{10} + u
Two numbers r and s sum up to \frac{21}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{21}{5} = \frac{21}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{21}{10} - u) (\frac{21}{10} + u) = \frac{18}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{18}{5}
\frac{441}{100} - u^2 = \frac{18}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{18}{5}-\frac{441}{100} = -\frac{81}{100}
Simplify the expression by subtracting \frac{441}{100} on both sides
u^2 = \frac{81}{100} u = \pm\sqrt{\frac{81}{100}} = \pm \frac{9}{10}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{21}{10} - \frac{9}{10} = 1.200 s = \frac{21}{10} + \frac{9}{10} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}