Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(15x-47\right)
Factor out x.
15x^{2}-47x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-47\right)±\sqrt{\left(-47\right)^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-47\right)±47}{2\times 15}
Take the square root of \left(-47\right)^{2}.
x=\frac{47±47}{2\times 15}
The opposite of -47 is 47.
x=\frac{47±47}{30}
Multiply 2 times 15.
x=\frac{94}{30}
Now solve the equation x=\frac{47±47}{30} when ± is plus. Add 47 to 47.
x=\frac{47}{15}
Reduce the fraction \frac{94}{30} to lowest terms by extracting and canceling out 2.
x=\frac{0}{30}
Now solve the equation x=\frac{47±47}{30} when ± is minus. Subtract 47 from 47.
x=0
Divide 0 by 30.
15x^{2}-47x=15\left(x-\frac{47}{15}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{47}{15} for x_{1} and 0 for x_{2}.
15x^{2}-47x=15\times \frac{15x-47}{15}x
Subtract \frac{47}{15} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-47x=\left(15x-47\right)x
Cancel out 15, the greatest common factor in 15 and 15.