Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-24-1=-x^{2}
Subtract 1 from both sides.
15x^{2}-25=-x^{2}
Subtract 1 from -24 to get -25.
15x^{2}-25+x^{2}=0
Add x^{2} to both sides.
16x^{2}-25=0
Combine 15x^{2} and x^{2} to get 16x^{2}.
\left(4x-5\right)\left(4x+5\right)=0
Consider 16x^{2}-25. Rewrite 16x^{2}-25 as \left(4x\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{4} x=-\frac{5}{4}
To find equation solutions, solve 4x-5=0 and 4x+5=0.
15x^{2}-24+x^{2}=1
Add x^{2} to both sides.
16x^{2}-24=1
Combine 15x^{2} and x^{2} to get 16x^{2}.
16x^{2}=1+24
Add 24 to both sides.
16x^{2}=25
Add 1 and 24 to get 25.
x^{2}=\frac{25}{16}
Divide both sides by 16.
x=\frac{5}{4} x=-\frac{5}{4}
Take the square root of both sides of the equation.
15x^{2}-24-1=-x^{2}
Subtract 1 from both sides.
15x^{2}-25=-x^{2}
Subtract 1 from -24 to get -25.
15x^{2}-25+x^{2}=0
Add x^{2} to both sides.
16x^{2}-25=0
Combine 15x^{2} and x^{2} to get 16x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 16\left(-25\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 16\left(-25\right)}}{2\times 16}
Square 0.
x=\frac{0±\sqrt{-64\left(-25\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{0±\sqrt{1600}}{2\times 16}
Multiply -64 times -25.
x=\frac{0±40}{2\times 16}
Take the square root of 1600.
x=\frac{0±40}{32}
Multiply 2 times 16.
x=\frac{5}{4}
Now solve the equation x=\frac{0±40}{32} when ± is plus. Reduce the fraction \frac{40}{32} to lowest terms by extracting and canceling out 8.
x=-\frac{5}{4}
Now solve the equation x=\frac{0±40}{32} when ± is minus. Reduce the fraction \frac{-40}{32} to lowest terms by extracting and canceling out 8.
x=\frac{5}{4} x=-\frac{5}{4}
The equation is now solved.