Factor
\left(3x+8\right)\left(5x+6\right)
Evaluate
\left(3x+8\right)\left(5x+6\right)
Graph
Share
Copied to clipboard
a+b=58 ab=15\times 48=720
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
1,720 2,360 3,240 4,180 5,144 6,120 8,90 9,80 10,72 12,60 15,48 16,45 18,40 20,36 24,30
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 720.
1+720=721 2+360=362 3+240=243 4+180=184 5+144=149 6+120=126 8+90=98 9+80=89 10+72=82 12+60=72 15+48=63 16+45=61 18+40=58 20+36=56 24+30=54
Calculate the sum for each pair.
a=18 b=40
The solution is the pair that gives sum 58.
\left(15x^{2}+18x\right)+\left(40x+48\right)
Rewrite 15x^{2}+58x+48 as \left(15x^{2}+18x\right)+\left(40x+48\right).
3x\left(5x+6\right)+8\left(5x+6\right)
Factor out 3x in the first and 8 in the second group.
\left(5x+6\right)\left(3x+8\right)
Factor out common term 5x+6 by using distributive property.
15x^{2}+58x+48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-58±\sqrt{58^{2}-4\times 15\times 48}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-58±\sqrt{3364-4\times 15\times 48}}{2\times 15}
Square 58.
x=\frac{-58±\sqrt{3364-60\times 48}}{2\times 15}
Multiply -4 times 15.
x=\frac{-58±\sqrt{3364-2880}}{2\times 15}
Multiply -60 times 48.
x=\frac{-58±\sqrt{484}}{2\times 15}
Add 3364 to -2880.
x=\frac{-58±22}{2\times 15}
Take the square root of 484.
x=\frac{-58±22}{30}
Multiply 2 times 15.
x=-\frac{36}{30}
Now solve the equation x=\frac{-58±22}{30} when ± is plus. Add -58 to 22.
x=-\frac{6}{5}
Reduce the fraction \frac{-36}{30} to lowest terms by extracting and canceling out 6.
x=-\frac{80}{30}
Now solve the equation x=\frac{-58±22}{30} when ± is minus. Subtract 22 from -58.
x=-\frac{8}{3}
Reduce the fraction \frac{-80}{30} to lowest terms by extracting and canceling out 10.
15x^{2}+58x+48=15\left(x-\left(-\frac{6}{5}\right)\right)\left(x-\left(-\frac{8}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{6}{5} for x_{1} and -\frac{8}{3} for x_{2}.
15x^{2}+58x+48=15\left(x+\frac{6}{5}\right)\left(x+\frac{8}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}+58x+48=15\times \frac{5x+6}{5}\left(x+\frac{8}{3}\right)
Add \frac{6}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+58x+48=15\times \frac{5x+6}{5}\times \frac{3x+8}{3}
Add \frac{8}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+58x+48=15\times \frac{\left(5x+6\right)\left(3x+8\right)}{5\times 3}
Multiply \frac{5x+6}{5} times \frac{3x+8}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15x^{2}+58x+48=15\times \frac{\left(5x+6\right)\left(3x+8\right)}{15}
Multiply 5 times 3.
15x^{2}+58x+48=\left(5x+6\right)\left(3x+8\right)
Cancel out 15, the greatest common factor in 15 and 15.
x ^ 2 +\frac{58}{15}x +\frac{16}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = -\frac{58}{15} rs = \frac{16}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{29}{15} - u s = -\frac{29}{15} + u
Two numbers r and s sum up to -\frac{58}{15} exactly when the average of the two numbers is \frac{1}{2}*-\frac{58}{15} = -\frac{29}{15}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{29}{15} - u) (-\frac{29}{15} + u) = \frac{16}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{16}{5}
\frac{841}{225} - u^2 = \frac{16}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{16}{5}-\frac{841}{225} = -\frac{121}{225}
Simplify the expression by subtracting \frac{841}{225} on both sides
u^2 = \frac{121}{225} u = \pm\sqrt{\frac{121}{225}} = \pm \frac{11}{15}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{29}{15} - \frac{11}{15} = -2.667 s = -\frac{29}{15} + \frac{11}{15} = -1.200
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}