Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}+28x+12=9x^{2}+5
Add 4 and 1 to get 5.
15x^{2}+28x+12-9x^{2}=5
Subtract 9x^{2} from both sides.
6x^{2}+28x+12=5
Combine 15x^{2} and -9x^{2} to get 6x^{2}.
6x^{2}+28x+12-5=0
Subtract 5 from both sides.
6x^{2}+28x+7=0
Subtract 5 from 12 to get 7.
x=\frac{-28±\sqrt{28^{2}-4\times 6\times 7}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 28 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 6\times 7}}{2\times 6}
Square 28.
x=\frac{-28±\sqrt{784-24\times 7}}{2\times 6}
Multiply -4 times 6.
x=\frac{-28±\sqrt{784-168}}{2\times 6}
Multiply -24 times 7.
x=\frac{-28±\sqrt{616}}{2\times 6}
Add 784 to -168.
x=\frac{-28±2\sqrt{154}}{2\times 6}
Take the square root of 616.
x=\frac{-28±2\sqrt{154}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{154}-28}{12}
Now solve the equation x=\frac{-28±2\sqrt{154}}{12} when ± is plus. Add -28 to 2\sqrt{154}.
x=\frac{\sqrt{154}}{6}-\frac{7}{3}
Divide -28+2\sqrt{154} by 12.
x=\frac{-2\sqrt{154}-28}{12}
Now solve the equation x=\frac{-28±2\sqrt{154}}{12} when ± is minus. Subtract 2\sqrt{154} from -28.
x=-\frac{\sqrt{154}}{6}-\frac{7}{3}
Divide -28-2\sqrt{154} by 12.
x=\frac{\sqrt{154}}{6}-\frac{7}{3} x=-\frac{\sqrt{154}}{6}-\frac{7}{3}
The equation is now solved.
15x^{2}+28x+12=9x^{2}+5
Add 4 and 1 to get 5.
15x^{2}+28x+12-9x^{2}=5
Subtract 9x^{2} from both sides.
6x^{2}+28x+12=5
Combine 15x^{2} and -9x^{2} to get 6x^{2}.
6x^{2}+28x=5-12
Subtract 12 from both sides.
6x^{2}+28x=-7
Subtract 12 from 5 to get -7.
\frac{6x^{2}+28x}{6}=-\frac{7}{6}
Divide both sides by 6.
x^{2}+\frac{28}{6}x=-\frac{7}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{14}{3}x=-\frac{7}{6}
Reduce the fraction \frac{28}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{14}{3}x+\left(\frac{7}{3}\right)^{2}=-\frac{7}{6}+\left(\frac{7}{3}\right)^{2}
Divide \frac{14}{3}, the coefficient of the x term, by 2 to get \frac{7}{3}. Then add the square of \frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{14}{3}x+\frac{49}{9}=-\frac{7}{6}+\frac{49}{9}
Square \frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{14}{3}x+\frac{49}{9}=\frac{77}{18}
Add -\frac{7}{6} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{3}\right)^{2}=\frac{77}{18}
Factor x^{2}+\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{3}\right)^{2}}=\sqrt{\frac{77}{18}}
Take the square root of both sides of the equation.
x+\frac{7}{3}=\frac{\sqrt{154}}{6} x+\frac{7}{3}=-\frac{\sqrt{154}}{6}
Simplify.
x=\frac{\sqrt{154}}{6}-\frac{7}{3} x=-\frac{\sqrt{154}}{6}-\frac{7}{3}
Subtract \frac{7}{3} from both sides of the equation.