Factor
\left(5x-4\right)\left(3x+4\right)
Evaluate
\left(5x-4\right)\left(3x+4\right)
Graph
Share
Copied to clipboard
15x^{2}+8x-16
Multiply and combine like terms.
a+b=8 ab=15\left(-16\right)=-240
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
-1,240 -2,120 -3,80 -4,60 -5,48 -6,40 -8,30 -10,24 -12,20 -15,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -240.
-1+240=239 -2+120=118 -3+80=77 -4+60=56 -5+48=43 -6+40=34 -8+30=22 -10+24=14 -12+20=8 -15+16=1
Calculate the sum for each pair.
a=-12 b=20
The solution is the pair that gives sum 8.
\left(15x^{2}-12x\right)+\left(20x-16\right)
Rewrite 15x^{2}+8x-16 as \left(15x^{2}-12x\right)+\left(20x-16\right).
3x\left(5x-4\right)+4\left(5x-4\right)
Factor out 3x in the first and 4 in the second group.
\left(5x-4\right)\left(3x+4\right)
Factor out common term 5x-4 by using distributive property.
15x^{2}+8x-16
Combine 20x and -12x to get 8x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}