Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(3x^{2}+2x\right)
Factor out 5.
x\left(3x+2\right)
Consider 3x^{2}+2x. Factor out x.
5x\left(3x+2\right)
Rewrite the complete factored expression.
15x^{2}+10x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±10}{2\times 15}
Take the square root of 10^{2}.
x=\frac{-10±10}{30}
Multiply 2 times 15.
x=\frac{0}{30}
Now solve the equation x=\frac{-10±10}{30} when ± is plus. Add -10 to 10.
x=0
Divide 0 by 30.
x=-\frac{20}{30}
Now solve the equation x=\frac{-10±10}{30} when ± is minus. Subtract 10 from -10.
x=-\frac{2}{3}
Reduce the fraction \frac{-20}{30} to lowest terms by extracting and canceling out 10.
15x^{2}+10x=15x\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{2}{3} for x_{2}.
15x^{2}+10x=15x\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}+10x=15x\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+10x=5x\left(3x+2\right)
Cancel out 3, the greatest common factor in 15 and 3.