Solve for x
x=-\frac{15}{26}\approx -0.576923077
Graph
Share
Copied to clipboard
15x-2-\left(-x+3\right)=-\left(7x+23\right)-x+3-2x
Add -6 and 6 to get 0.
15x-2-\left(-x\right)-3=-\left(7x+23\right)-x+3-2x
To find the opposite of -x+3, find the opposite of each term.
15x-5-\left(-x\right)=-\left(7x+23\right)-x+3-2x
Subtract 3 from -2 to get -5.
15x-5-\left(-x\right)=-7x-23-x+3-2x
To find the opposite of 7x+23, find the opposite of each term.
15x-5-\left(-x\right)=-8x-23+3-2x
Combine -7x and -x to get -8x.
15x-5-\left(-x\right)=-8x-20-2x
Add -23 and 3 to get -20.
15x-5-\left(-x\right)=-10x-20
Combine -8x and -2x to get -10x.
15x-5-\left(-x\right)+10x=-20
Add 10x to both sides.
25x-5-\left(-x\right)=-20
Combine 15x and 10x to get 25x.
25x-\left(-x\right)=-20+5
Add 5 to both sides.
25x-\left(-x\right)=-15
Add -20 and 5 to get -15.
25x+x=-15
Multiply -1 and -1 to get 1.
26x=-15
Combine 25x and x to get 26x.
x=\frac{-15}{26}
Divide both sides by 26.
x=-\frac{15}{26}
Fraction \frac{-15}{26} can be rewritten as -\frac{15}{26} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}