Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

15\left(t^{2}-5t\right)
Factor out 15.
t\left(t-5\right)
Consider t^{2}-5t. Factor out t.
15t\left(t-5\right)
Rewrite the complete factored expression.
15t^{2}-75t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-75\right)±\sqrt{\left(-75\right)^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-75\right)±75}{2\times 15}
Take the square root of \left(-75\right)^{2}.
t=\frac{75±75}{2\times 15}
The opposite of -75 is 75.
t=\frac{75±75}{30}
Multiply 2 times 15.
t=\frac{150}{30}
Now solve the equation t=\frac{75±75}{30} when ± is plus. Add 75 to 75.
t=5
Divide 150 by 30.
t=\frac{0}{30}
Now solve the equation t=\frac{75±75}{30} when ± is minus. Subtract 75 from 75.
t=0
Divide 0 by 30.
15t^{2}-75t=15\left(t-5\right)t
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and 0 for x_{2}.