Solve for p
p = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
p=-4
Share
Copied to clipboard
15p^{2}+80+80p=0
Add 80p to both sides.
15p^{2}+80p+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-80±\sqrt{80^{2}-4\times 15\times 80}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 80 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-80±\sqrt{6400-4\times 15\times 80}}{2\times 15}
Square 80.
p=\frac{-80±\sqrt{6400-60\times 80}}{2\times 15}
Multiply -4 times 15.
p=\frac{-80±\sqrt{6400-4800}}{2\times 15}
Multiply -60 times 80.
p=\frac{-80±\sqrt{1600}}{2\times 15}
Add 6400 to -4800.
p=\frac{-80±40}{2\times 15}
Take the square root of 1600.
p=\frac{-80±40}{30}
Multiply 2 times 15.
p=-\frac{40}{30}
Now solve the equation p=\frac{-80±40}{30} when ± is plus. Add -80 to 40.
p=-\frac{4}{3}
Reduce the fraction \frac{-40}{30} to lowest terms by extracting and canceling out 10.
p=-\frac{120}{30}
Now solve the equation p=\frac{-80±40}{30} when ± is minus. Subtract 40 from -80.
p=-4
Divide -120 by 30.
p=-\frac{4}{3} p=-4
The equation is now solved.
15p^{2}+80+80p=0
Add 80p to both sides.
15p^{2}+80p=-80
Subtract 80 from both sides. Anything subtracted from zero gives its negation.
\frac{15p^{2}+80p}{15}=-\frac{80}{15}
Divide both sides by 15.
p^{2}+\frac{80}{15}p=-\frac{80}{15}
Dividing by 15 undoes the multiplication by 15.
p^{2}+\frac{16}{3}p=-\frac{80}{15}
Reduce the fraction \frac{80}{15} to lowest terms by extracting and canceling out 5.
p^{2}+\frac{16}{3}p=-\frac{16}{3}
Reduce the fraction \frac{-80}{15} to lowest terms by extracting and canceling out 5.
p^{2}+\frac{16}{3}p+\left(\frac{8}{3}\right)^{2}=-\frac{16}{3}+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+\frac{16}{3}p+\frac{64}{9}=-\frac{16}{3}+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
p^{2}+\frac{16}{3}p+\frac{64}{9}=\frac{16}{9}
Add -\frac{16}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p+\frac{8}{3}\right)^{2}=\frac{16}{9}
Factor p^{2}+\frac{16}{3}p+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{8}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
p+\frac{8}{3}=\frac{4}{3} p+\frac{8}{3}=-\frac{4}{3}
Simplify.
p=-\frac{4}{3} p=-4
Subtract \frac{8}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}