Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(3c^{2}-2c\right)
Factor out 5.
c\left(3c-2\right)
Consider 3c^{2}-2c. Factor out c.
5c\left(3c-2\right)
Rewrite the complete factored expression.
15c^{2}-10c=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-10\right)±10}{2\times 15}
Take the square root of \left(-10\right)^{2}.
c=\frac{10±10}{2\times 15}
The opposite of -10 is 10.
c=\frac{10±10}{30}
Multiply 2 times 15.
c=\frac{20}{30}
Now solve the equation c=\frac{10±10}{30} when ± is plus. Add 10 to 10.
c=\frac{2}{3}
Reduce the fraction \frac{20}{30} to lowest terms by extracting and canceling out 10.
c=\frac{0}{30}
Now solve the equation c=\frac{10±10}{30} when ± is minus. Subtract 10 from 10.
c=0
Divide 0 by 30.
15c^{2}-10c=15\left(c-\frac{2}{3}\right)c
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and 0 for x_{2}.
15c^{2}-10c=15\times \frac{3c-2}{3}c
Subtract \frac{2}{3} from c by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15c^{2}-10c=5\left(3c-2\right)c
Cancel out 3, the greatest common factor in 15 and 3.