Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{3\left(a_{1}-1\right)}{bz}\text{, }&z\neq 0\text{ and }b\neq 0\\a\in \mathrm{C}\text{, }&\left(b=0\text{ or }z=0\right)\text{ and }a_{1}=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{3\left(a_{1}-1\right)}{bz}\text{, }&z\neq 0\text{ and }b\neq 0\\a\in \mathrm{R}\text{, }&\left(b=0\text{ or }z=0\right)\text{ and }a_{1}=1\end{matrix}\right.
Solve for a_1
a_{1}=-\frac{abz}{3}+1
Share
Copied to clipboard
5baz=15-15a_{1}
Subtract 15a_{1} from both sides.
5bza=15-15a_{1}
The equation is in standard form.
\frac{5bza}{5bz}=\frac{15-15a_{1}}{5bz}
Divide both sides by 5bz.
a=\frac{15-15a_{1}}{5bz}
Dividing by 5bz undoes the multiplication by 5bz.
a=\frac{3\left(1-a_{1}\right)}{bz}
Divide 15-15a_{1} by 5bz.
5baz=15-15a_{1}
Subtract 15a_{1} from both sides.
5bza=15-15a_{1}
The equation is in standard form.
\frac{5bza}{5bz}=\frac{15-15a_{1}}{5bz}
Divide both sides by 5bz.
a=\frac{15-15a_{1}}{5bz}
Dividing by 5bz undoes the multiplication by 5bz.
a=\frac{3\left(1-a_{1}\right)}{bz}
Divide 15-15a_{1} by 5bz.
15a_{1}=15-5baz
Subtract 5baz from both sides.
15a_{1}=15-5abz
The equation is in standard form.
\frac{15a_{1}}{15}=\frac{15-5abz}{15}
Divide both sides by 15.
a_{1}=\frac{15-5abz}{15}
Dividing by 15 undoes the multiplication by 15.
a_{1}=-\frac{abz}{3}+1
Divide 15-5baz by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}