Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(5a^{2}+4a\right)
Factor out 3.
a\left(5a+4\right)
Consider 5a^{2}+4a. Factor out a.
3a\left(5a+4\right)
Rewrite the complete factored expression.
15a^{2}+12a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-12±\sqrt{12^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-12±12}{2\times 15}
Take the square root of 12^{2}.
a=\frac{-12±12}{30}
Multiply 2 times 15.
a=\frac{0}{30}
Now solve the equation a=\frac{-12±12}{30} when ± is plus. Add -12 to 12.
a=0
Divide 0 by 30.
a=-\frac{24}{30}
Now solve the equation a=\frac{-12±12}{30} when ± is minus. Subtract 12 from -12.
a=-\frac{4}{5}
Reduce the fraction \frac{-24}{30} to lowest terms by extracting and canceling out 6.
15a^{2}+12a=15a\left(a-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{4}{5} for x_{2}.
15a^{2}+12a=15a\left(a+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15a^{2}+12a=15a\times \frac{5a+4}{5}
Add \frac{4}{5} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15a^{2}+12a=3a\left(5a+4\right)
Cancel out 5, the greatest common factor in 15 and 5.