15 a + 5 ( 100 - a ) \leq 0.3 [ 45 + 25 ( 100 - a ) )
Solve for a
a\leq \frac{527}{35}
Share
Copied to clipboard
15a+500-5a\leq 0.3\left(45+25\left(100-a\right)\right)
Use the distributive property to multiply 5 by 100-a.
10a+500\leq 0.3\left(45+25\left(100-a\right)\right)
Combine 15a and -5a to get 10a.
10a+500\leq 0.3\left(45+2500-25a\right)
Use the distributive property to multiply 25 by 100-a.
10a+500\leq 0.3\left(2545-25a\right)
Add 45 and 2500 to get 2545.
10a+500\leq 763.5-7.5a
Use the distributive property to multiply 0.3 by 2545-25a.
10a+500+7.5a\leq 763.5
Add 7.5a to both sides.
17.5a+500\leq 763.5
Combine 10a and 7.5a to get 17.5a.
17.5a\leq 763.5-500
Subtract 500 from both sides.
17.5a\leq 263.5
Subtract 500 from 763.5 to get 263.5.
a\leq \frac{263.5}{17.5}
Divide both sides by 17.5. Since 17.5 is positive, the inequality direction remains the same.
a\leq \frac{2635}{175}
Expand \frac{263.5}{17.5} by multiplying both numerator and the denominator by 10.
a\leq \frac{527}{35}
Reduce the fraction \frac{2635}{175} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}