Solve for a
a = \frac{21}{2} = 10\frac{1}{2} = 10.5
Share
Copied to clipboard
15-a-\frac{1}{3}a=1
Subtract \frac{1}{3}a from both sides.
15-\frac{4}{3}a=1
Combine -a and -\frac{1}{3}a to get -\frac{4}{3}a.
-\frac{4}{3}a=1-15
Subtract 15 from both sides.
-\frac{4}{3}a=-14
Subtract 15 from 1 to get -14.
a=-14\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}.
a=\frac{-14\left(-3\right)}{4}
Express -14\left(-\frac{3}{4}\right) as a single fraction.
a=\frac{42}{4}
Multiply -14 and -3 to get 42.
a=\frac{21}{2}
Reduce the fraction \frac{42}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}