Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}-8x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-4\right)\times 15}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-4\right)\times 15}}{2\left(-4\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+16\times 15}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-8\right)±\sqrt{64+240}}{2\left(-4\right)}
Multiply 16 times 15.
x=\frac{-\left(-8\right)±\sqrt{304}}{2\left(-4\right)}
Add 64 to 240.
x=\frac{-\left(-8\right)±4\sqrt{19}}{2\left(-4\right)}
Take the square root of 304.
x=\frac{8±4\sqrt{19}}{2\left(-4\right)}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{19}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{19}+8}{-8}
Now solve the equation x=\frac{8±4\sqrt{19}}{-8} when ± is plus. Add 8 to 4\sqrt{19}.
x=-\frac{\sqrt{19}}{2}-1
Divide 8+4\sqrt{19} by -8.
x=\frac{8-4\sqrt{19}}{-8}
Now solve the equation x=\frac{8±4\sqrt{19}}{-8} when ± is minus. Subtract 4\sqrt{19} from 8.
x=\frac{\sqrt{19}}{2}-1
Divide 8-4\sqrt{19} by -8.
-4x^{2}-8x+15=-4\left(x-\left(-\frac{\sqrt{19}}{2}-1\right)\right)\left(x-\left(\frac{\sqrt{19}}{2}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1-\frac{\sqrt{19}}{2} for x_{1} and -1+\frac{\sqrt{19}}{2} for x_{2}.