Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-15>16x
Use the distributive property to multiply 15 by x^{2}-1.
15x^{2}-15-16x>0
Subtract 16x from both sides.
15x^{2}-15-16x=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 15\left(-15\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 15 for a, -16 for b, and -15 for c in the quadratic formula.
x=\frac{16±34}{30}
Do the calculations.
x=\frac{5}{3} x=-\frac{3}{5}
Solve the equation x=\frac{16±34}{30} when ± is plus and when ± is minus.
15\left(x-\frac{5}{3}\right)\left(x+\frac{3}{5}\right)>0
Rewrite the inequality by using the obtained solutions.
x-\frac{5}{3}<0 x+\frac{3}{5}<0
For the product to be positive, x-\frac{5}{3} and x+\frac{3}{5} have to be both negative or both positive. Consider the case when x-\frac{5}{3} and x+\frac{3}{5} are both negative.
x<-\frac{3}{5}
The solution satisfying both inequalities is x<-\frac{3}{5}.
x+\frac{3}{5}>0 x-\frac{5}{3}>0
Consider the case when x-\frac{5}{3} and x+\frac{3}{5} are both positive.
x>\frac{5}{3}
The solution satisfying both inequalities is x>\frac{5}{3}.
x<-\frac{3}{5}\text{; }x>\frac{5}{3}
The final solution is the union of the obtained solutions.