Evaluate
\frac{1296x}{35}-\frac{479}{5}
Expand
\frac{1296x}{35}-\frac{479}{5}
Graph
Share
Copied to clipboard
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\left(\frac{2x}{7}+7\right)-7\left(x-7\right)\right)
Anything divided by one gives itself.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\left(\frac{2x}{7}+\frac{7\times 7}{7}\right)-7\left(x-7\right)\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{7}{7}.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\times \frac{2x+7\times 7}{7}-7\left(x-7\right)\right)
Since \frac{2x}{7} and \frac{7\times 7}{7} have the same denominator, add them by adding their numerators.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\times \frac{2x+49}{7}-7\left(x-7\right)\right)
Do the multiplications in 2x+7\times 7.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17\left(2x+49\right)}{5\times 7}-7\left(x-7\right)\right)
Multiply \frac{17}{5} times \frac{2x+49}{7} by multiplying numerator times numerator and denominator times denominator.
15\left(3x-2\right)-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{5\times 7}-\left(-7\left(x-7\right)\right)
To find the opposite of \frac{17\left(2x+49\right)}{5\times 7}-7\left(x-7\right), find the opposite of each term.
15\left(3x-2\right)-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{35}-\left(-7\left(x-7\right)\right)
Multiply 5 and 7 to get 35.
15\left(3x-2\right)-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
The opposite of -7\left(x-7\right) is 7\left(x-7\right).
45x-30-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Use the distributive property to multiply 15 by 3x-2.
45x-30-14x+7-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Use the distributive property to multiply -7 by 2x-1.
31x-30+7-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Combine 45x and -14x to get 31x.
31x-23-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Add -30 and 7 to get -23.
31x-23-\frac{34x+833}{35}+7\left(x-7\right)
Use the distributive property to multiply 17 by 2x+49.
31x-23-\frac{34x+833}{35}+7x-49
Use the distributive property to multiply 7 by x-7.
38x-23-\frac{34x+833}{35}-49
Combine 31x and 7x to get 38x.
38x-72-\frac{34x+833}{35}
Subtract 49 from -23 to get -72.
\frac{35\left(38x-72\right)}{35}-\frac{34x+833}{35}
To add or subtract expressions, expand them to make their denominators the same. Multiply 38x-72 times \frac{35}{35}.
\frac{35\left(38x-72\right)-\left(34x+833\right)}{35}
Since \frac{35\left(38x-72\right)}{35} and \frac{34x+833}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{1330x-2520-34x-833}{35}
Do the multiplications in 35\left(38x-72\right)-\left(34x+833\right).
\frac{1296x-3353}{35}
Combine like terms in 1330x-2520-34x-833.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\left(\frac{2x}{7}+7\right)-7\left(x-7\right)\right)
Anything divided by one gives itself.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\left(\frac{2x}{7}+\frac{7\times 7}{7}\right)-7\left(x-7\right)\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{7}{7}.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\times \frac{2x+7\times 7}{7}-7\left(x-7\right)\right)
Since \frac{2x}{7} and \frac{7\times 7}{7} have the same denominator, add them by adding their numerators.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17}{5}\times \frac{2x+49}{7}-7\left(x-7\right)\right)
Do the multiplications in 2x+7\times 7.
15\left(3x-2\right)-7\left(2x-1\right)-\left(\frac{17\left(2x+49\right)}{5\times 7}-7\left(x-7\right)\right)
Multiply \frac{17}{5} times \frac{2x+49}{7} by multiplying numerator times numerator and denominator times denominator.
15\left(3x-2\right)-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{5\times 7}-\left(-7\left(x-7\right)\right)
To find the opposite of \frac{17\left(2x+49\right)}{5\times 7}-7\left(x-7\right), find the opposite of each term.
15\left(3x-2\right)-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{35}-\left(-7\left(x-7\right)\right)
Multiply 5 and 7 to get 35.
15\left(3x-2\right)-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
The opposite of -7\left(x-7\right) is 7\left(x-7\right).
45x-30-7\left(2x-1\right)-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Use the distributive property to multiply 15 by 3x-2.
45x-30-14x+7-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Use the distributive property to multiply -7 by 2x-1.
31x-30+7-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Combine 45x and -14x to get 31x.
31x-23-\frac{17\left(2x+49\right)}{35}+7\left(x-7\right)
Add -30 and 7 to get -23.
31x-23-\frac{34x+833}{35}+7\left(x-7\right)
Use the distributive property to multiply 17 by 2x+49.
31x-23-\frac{34x+833}{35}+7x-49
Use the distributive property to multiply 7 by x-7.
38x-23-\frac{34x+833}{35}-49
Combine 31x and 7x to get 38x.
38x-72-\frac{34x+833}{35}
Subtract 49 from -23 to get -72.
\frac{35\left(38x-72\right)}{35}-\frac{34x+833}{35}
To add or subtract expressions, expand them to make their denominators the same. Multiply 38x-72 times \frac{35}{35}.
\frac{35\left(38x-72\right)-\left(34x+833\right)}{35}
Since \frac{35\left(38x-72\right)}{35} and \frac{34x+833}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{1330x-2520-34x-833}{35}
Do the multiplications in 35\left(38x-72\right)-\left(34x+833\right).
\frac{1296x-3353}{35}
Combine like terms in 1330x-2520-34x-833.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}