Evaluate
\frac{61}{2}=30.5
Factor
\frac{61}{2} = 30\frac{1}{2} = 30.5
Share
Copied to clipboard
30+\frac{3}{2}-\frac{2}{3}-\frac{2}{3}\times \frac{2}{4}
Multiply 15 and 2 to get 30.
\frac{60}{2}+\frac{3}{2}-\frac{2}{3}-\frac{2}{3}\times \frac{2}{4}
Convert 30 to fraction \frac{60}{2}.
\frac{60+3}{2}-\frac{2}{3}-\frac{2}{3}\times \frac{2}{4}
Since \frac{60}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{63}{2}-\frac{2}{3}-\frac{2}{3}\times \frac{2}{4}
Add 60 and 3 to get 63.
\frac{189}{6}-\frac{4}{6}-\frac{2}{3}\times \frac{2}{4}
Least common multiple of 2 and 3 is 6. Convert \frac{63}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{189-4}{6}-\frac{2}{3}\times \frac{2}{4}
Since \frac{189}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{185}{6}-\frac{2}{3}\times \frac{2}{4}
Subtract 4 from 189 to get 185.
\frac{185}{6}-\frac{2}{3}\times \frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{185}{6}-\frac{2\times 1}{3\times 2}
Multiply \frac{2}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{185}{6}-\frac{1}{3}
Cancel out 2 in both numerator and denominator.
\frac{185}{6}-\frac{2}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{185}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{185-2}{6}
Since \frac{185}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{183}{6}
Subtract 2 from 185 to get 183.
\frac{61}{2}
Reduce the fraction \frac{183}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}