Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-600x+1140=0
Multiply 570 and 2 to get 1140.
x=\frac{-\left(-600\right)±\sqrt{\left(-600\right)^{2}-4\times 15\times 1140}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -600 for b, and 1140 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-600\right)±\sqrt{360000-4\times 15\times 1140}}{2\times 15}
Square -600.
x=\frac{-\left(-600\right)±\sqrt{360000-60\times 1140}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-600\right)±\sqrt{360000-68400}}{2\times 15}
Multiply -60 times 1140.
x=\frac{-\left(-600\right)±\sqrt{291600}}{2\times 15}
Add 360000 to -68400.
x=\frac{-\left(-600\right)±540}{2\times 15}
Take the square root of 291600.
x=\frac{600±540}{2\times 15}
The opposite of -600 is 600.
x=\frac{600±540}{30}
Multiply 2 times 15.
x=\frac{1140}{30}
Now solve the equation x=\frac{600±540}{30} when ± is plus. Add 600 to 540.
x=38
Divide 1140 by 30.
x=\frac{60}{30}
Now solve the equation x=\frac{600±540}{30} when ± is minus. Subtract 540 from 600.
x=2
Divide 60 by 30.
x=38 x=2
The equation is now solved.
15x^{2}-600x+1140=0
Multiply 570 and 2 to get 1140.
15x^{2}-600x=-1140
Subtract 1140 from both sides. Anything subtracted from zero gives its negation.
\frac{15x^{2}-600x}{15}=-\frac{1140}{15}
Divide both sides by 15.
x^{2}+\left(-\frac{600}{15}\right)x=-\frac{1140}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-40x=-\frac{1140}{15}
Divide -600 by 15.
x^{2}-40x=-76
Divide -1140 by 15.
x^{2}-40x+\left(-20\right)^{2}=-76+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-76+400
Square -20.
x^{2}-40x+400=324
Add -76 to 400.
\left(x-20\right)^{2}=324
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{324}
Take the square root of both sides of the equation.
x-20=18 x-20=-18
Simplify.
x=38 x=2
Add 20 to both sides of the equation.