Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-3x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 15\left(-14\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 15\left(-14\right)}}{2\times 15}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-60\left(-14\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-3\right)±\sqrt{9+840}}{2\times 15}
Multiply -60 times -14.
x=\frac{-\left(-3\right)±\sqrt{849}}{2\times 15}
Add 9 to 840.
x=\frac{3±\sqrt{849}}{2\times 15}
The opposite of -3 is 3.
x=\frac{3±\sqrt{849}}{30}
Multiply 2 times 15.
x=\frac{\sqrt{849}+3}{30}
Now solve the equation x=\frac{3±\sqrt{849}}{30} when ± is plus. Add 3 to \sqrt{849}.
x=\frac{\sqrt{849}}{30}+\frac{1}{10}
Divide 3+\sqrt{849} by 30.
x=\frac{3-\sqrt{849}}{30}
Now solve the equation x=\frac{3±\sqrt{849}}{30} when ± is minus. Subtract \sqrt{849} from 3.
x=-\frac{\sqrt{849}}{30}+\frac{1}{10}
Divide 3-\sqrt{849} by 30.
15x^{2}-3x-14=15\left(x-\left(\frac{\sqrt{849}}{30}+\frac{1}{10}\right)\right)\left(x-\left(-\frac{\sqrt{849}}{30}+\frac{1}{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{10}+\frac{\sqrt{849}}{30} for x_{1} and \frac{1}{10}-\frac{\sqrt{849}}{30} for x_{2}.