Factor
\left(x-3\right)\left(15x+19\right)
Evaluate
\left(x-3\right)\left(15x+19\right)
Graph
Share
Copied to clipboard
a+b=-26 ab=15\left(-57\right)=-855
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx-57. To find a and b, set up a system to be solved.
1,-855 3,-285 5,-171 9,-95 15,-57 19,-45
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -855.
1-855=-854 3-285=-282 5-171=-166 9-95=-86 15-57=-42 19-45=-26
Calculate the sum for each pair.
a=-45 b=19
The solution is the pair that gives sum -26.
\left(15x^{2}-45x\right)+\left(19x-57\right)
Rewrite 15x^{2}-26x-57 as \left(15x^{2}-45x\right)+\left(19x-57\right).
15x\left(x-3\right)+19\left(x-3\right)
Factor out 15x in the first and 19 in the second group.
\left(x-3\right)\left(15x+19\right)
Factor out common term x-3 by using distributive property.
15x^{2}-26x-57=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 15\left(-57\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 15\left(-57\right)}}{2\times 15}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-60\left(-57\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-26\right)±\sqrt{676+3420}}{2\times 15}
Multiply -60 times -57.
x=\frac{-\left(-26\right)±\sqrt{4096}}{2\times 15}
Add 676 to 3420.
x=\frac{-\left(-26\right)±64}{2\times 15}
Take the square root of 4096.
x=\frac{26±64}{2\times 15}
The opposite of -26 is 26.
x=\frac{26±64}{30}
Multiply 2 times 15.
x=\frac{90}{30}
Now solve the equation x=\frac{26±64}{30} when ± is plus. Add 26 to 64.
x=3
Divide 90 by 30.
x=-\frac{38}{30}
Now solve the equation x=\frac{26±64}{30} when ± is minus. Subtract 64 from 26.
x=-\frac{19}{15}
Reduce the fraction \frac{-38}{30} to lowest terms by extracting and canceling out 2.
15x^{2}-26x-57=15\left(x-3\right)\left(x-\left(-\frac{19}{15}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -\frac{19}{15} for x_{2}.
15x^{2}-26x-57=15\left(x-3\right)\left(x+\frac{19}{15}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}-26x-57=15\left(x-3\right)\times \frac{15x+19}{15}
Add \frac{19}{15} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-26x-57=\left(x-3\right)\left(15x+19\right)
Cancel out 15, the greatest common factor in 15 and 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}