Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-24x-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 15\left(-36\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 15\left(-36\right)}}{2\times 15}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-60\left(-36\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-24\right)±\sqrt{576+2160}}{2\times 15}
Multiply -60 times -36.
x=\frac{-\left(-24\right)±\sqrt{2736}}{2\times 15}
Add 576 to 2160.
x=\frac{-\left(-24\right)±12\sqrt{19}}{2\times 15}
Take the square root of 2736.
x=\frac{24±12\sqrt{19}}{2\times 15}
The opposite of -24 is 24.
x=\frac{24±12\sqrt{19}}{30}
Multiply 2 times 15.
x=\frac{12\sqrt{19}+24}{30}
Now solve the equation x=\frac{24±12\sqrt{19}}{30} when ± is plus. Add 24 to 12\sqrt{19}.
x=\frac{2\sqrt{19}+4}{5}
Divide 24+12\sqrt{19} by 30.
x=\frac{24-12\sqrt{19}}{30}
Now solve the equation x=\frac{24±12\sqrt{19}}{30} when ± is minus. Subtract 12\sqrt{19} from 24.
x=\frac{4-2\sqrt{19}}{5}
Divide 24-12\sqrt{19} by 30.
15x^{2}-24x-36=15\left(x-\frac{2\sqrt{19}+4}{5}\right)\left(x-\frac{4-2\sqrt{19}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4+2\sqrt{19}}{5} for x_{1} and \frac{4-2\sqrt{19}}{5} for x_{2}.