Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-16 ab=15\left(-7\right)=-105
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
1,-105 3,-35 5,-21 7,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Calculate the sum for each pair.
a=-21 b=5
The solution is the pair that gives sum -16.
\left(15x^{2}-21x\right)+\left(5x-7\right)
Rewrite 15x^{2}-16x-7 as \left(15x^{2}-21x\right)+\left(5x-7\right).
3x\left(5x-7\right)+5x-7
Factor out 3x in 15x^{2}-21x.
\left(5x-7\right)\left(3x+1\right)
Factor out common term 5x-7 by using distributive property.
15x^{2}-16x-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 15\left(-7\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 15\left(-7\right)}}{2\times 15}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-60\left(-7\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-16\right)±\sqrt{256+420}}{2\times 15}
Multiply -60 times -7.
x=\frac{-\left(-16\right)±\sqrt{676}}{2\times 15}
Add 256 to 420.
x=\frac{-\left(-16\right)±26}{2\times 15}
Take the square root of 676.
x=\frac{16±26}{2\times 15}
The opposite of -16 is 16.
x=\frac{16±26}{30}
Multiply 2 times 15.
x=\frac{42}{30}
Now solve the equation x=\frac{16±26}{30} when ± is plus. Add 16 to 26.
x=\frac{7}{5}
Reduce the fraction \frac{42}{30} to lowest terms by extracting and canceling out 6.
x=-\frac{10}{30}
Now solve the equation x=\frac{16±26}{30} when ± is minus. Subtract 26 from 16.
x=-\frac{1}{3}
Reduce the fraction \frac{-10}{30} to lowest terms by extracting and canceling out 10.
15x^{2}-16x-7=15\left(x-\frac{7}{5}\right)\left(x-\left(-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{5} for x_{1} and -\frac{1}{3} for x_{2}.
15x^{2}-16x-7=15\left(x-\frac{7}{5}\right)\left(x+\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}-16x-7=15\times \frac{5x-7}{5}\left(x+\frac{1}{3}\right)
Subtract \frac{7}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-16x-7=15\times \frac{5x-7}{5}\times \frac{3x+1}{3}
Add \frac{1}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-16x-7=15\times \frac{\left(5x-7\right)\left(3x+1\right)}{5\times 3}
Multiply \frac{5x-7}{5} times \frac{3x+1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15x^{2}-16x-7=15\times \frac{\left(5x-7\right)\left(3x+1\right)}{15}
Multiply 5 times 3.
15x^{2}-16x-7=\left(5x-7\right)\left(3x+1\right)
Cancel out 15, the greatest common factor in 15 and 15.