Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-141x+90=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-141\right)±\sqrt{\left(-141\right)^{2}-4\times 15\times 90}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-141\right)±\sqrt{19881-4\times 15\times 90}}{2\times 15}
Square -141.
x=\frac{-\left(-141\right)±\sqrt{19881-60\times 90}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-141\right)±\sqrt{19881-5400}}{2\times 15}
Multiply -60 times 90.
x=\frac{-\left(-141\right)±\sqrt{14481}}{2\times 15}
Add 19881 to -5400.
x=\frac{-\left(-141\right)±3\sqrt{1609}}{2\times 15}
Take the square root of 14481.
x=\frac{141±3\sqrt{1609}}{2\times 15}
The opposite of -141 is 141.
x=\frac{141±3\sqrt{1609}}{30}
Multiply 2 times 15.
x=\frac{3\sqrt{1609}+141}{30}
Now solve the equation x=\frac{141±3\sqrt{1609}}{30} when ± is plus. Add 141 to 3\sqrt{1609}.
x=\frac{\sqrt{1609}+47}{10}
Divide 141+3\sqrt{1609} by 30.
x=\frac{141-3\sqrt{1609}}{30}
Now solve the equation x=\frac{141±3\sqrt{1609}}{30} when ± is minus. Subtract 3\sqrt{1609} from 141.
x=\frac{47-\sqrt{1609}}{10}
Divide 141-3\sqrt{1609} by 30.
15x^{2}-141x+90=15\left(x-\frac{\sqrt{1609}+47}{10}\right)\left(x-\frac{47-\sqrt{1609}}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{47+\sqrt{1609}}{10} for x_{1} and \frac{47-\sqrt{1609}}{10} for x_{2}.