Solve for x
x=-\frac{2}{3}\approx -0.666666667
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
15x^{2}-12-8x=0
Subtract 8x from both sides.
15x^{2}-8x-12=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-8 ab=15\left(-12\right)=-180
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Calculate the sum for each pair.
a=-18 b=10
The solution is the pair that gives sum -8.
\left(15x^{2}-18x\right)+\left(10x-12\right)
Rewrite 15x^{2}-8x-12 as \left(15x^{2}-18x\right)+\left(10x-12\right).
3x\left(5x-6\right)+2\left(5x-6\right)
Factor out 3x in the first and 2 in the second group.
\left(5x-6\right)\left(3x+2\right)
Factor out common term 5x-6 by using distributive property.
x=\frac{6}{5} x=-\frac{2}{3}
To find equation solutions, solve 5x-6=0 and 3x+2=0.
15x^{2}-12-8x=0
Subtract 8x from both sides.
15x^{2}-8x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15\left(-12\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -8 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15\left(-12\right)}}{2\times 15}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-60\left(-12\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-8\right)±\sqrt{64+720}}{2\times 15}
Multiply -60 times -12.
x=\frac{-\left(-8\right)±\sqrt{784}}{2\times 15}
Add 64 to 720.
x=\frac{-\left(-8\right)±28}{2\times 15}
Take the square root of 784.
x=\frac{8±28}{2\times 15}
The opposite of -8 is 8.
x=\frac{8±28}{30}
Multiply 2 times 15.
x=\frac{36}{30}
Now solve the equation x=\frac{8±28}{30} when ± is plus. Add 8 to 28.
x=\frac{6}{5}
Reduce the fraction \frac{36}{30} to lowest terms by extracting and canceling out 6.
x=-\frac{20}{30}
Now solve the equation x=\frac{8±28}{30} when ± is minus. Subtract 28 from 8.
x=-\frac{2}{3}
Reduce the fraction \frac{-20}{30} to lowest terms by extracting and canceling out 10.
x=\frac{6}{5} x=-\frac{2}{3}
The equation is now solved.
15x^{2}-12-8x=0
Subtract 8x from both sides.
15x^{2}-8x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{15x^{2}-8x}{15}=\frac{12}{15}
Divide both sides by 15.
x^{2}-\frac{8}{15}x=\frac{12}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-\frac{8}{15}x=\frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=\frac{4}{5}+\left(-\frac{4}{15}\right)^{2}
Divide -\frac{8}{15}, the coefficient of the x term, by 2 to get -\frac{4}{15}. Then add the square of -\frac{4}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{4}{5}+\frac{16}{225}
Square -\frac{4}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{196}{225}
Add \frac{4}{5} to \frac{16}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{15}\right)^{2}=\frac{196}{225}
Factor x^{2}-\frac{8}{15}x+\frac{16}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{\frac{196}{225}}
Take the square root of both sides of the equation.
x-\frac{4}{15}=\frac{14}{15} x-\frac{4}{15}=-\frac{14}{15}
Simplify.
x=\frac{6}{5} x=-\frac{2}{3}
Add \frac{4}{15} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}